D. Learning

R0:0c354476e45d451a73b569693db4f74a-From Zero to Research Scientist full resources guide

From Zero to Research Scientist full resources guide

This guide is designated to anybody with basic programming knowledge or a computer science background interested in becoming a Research Scientist with on Deep Learning and NLP.

R0:8477de576deaf0ef41a00ad9e17c7171-Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems

Partial Differential Equations is All You Need for Generating Neural Architectures — A Theory for Physical Artificial Intelligence Systems

In this work, we generalize the reaction-diffusion equation in statistical physics, Schrödinger equation in quantum mechanics, Helmholtz equation in paraxial optics into the neural partial differential equations (NPDE), which can be considered as the fundamental equations in the field of artificial intelligence research

Federated Quantum Machine Learning

Federated Quantum Machine Learning

We present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model.

Multi-Image Steganography Using Deep Neural Networks

Multi-Image Steganography Using Deep Neural Networks

Steganography is the science of hiding a secret message within an ordinary public message. Over the years, steganography has been used to encode a lower resolution image into a higher resolution image by simple methods like LSB manipulation. We aim to utilize deep neural networks for the encoding and decoding of multiple secret images inside a single cover image of the same resolution.

R0:3d92323b5375746d21dcb172e8950adc-Explainability in Graph Neural Networks: A Taxonomic Survey

Explainability in Graph Neural Networks: A Taxonomic Survey

We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

Yann LeCun’s Deep Learning Course at CDS

Yann LeCun’s Deep Learning Course at CDS

This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include: DS-GA 1001 Intro to Data Science or a graduate-level machine learning course.

https://thebibleofai.online/wp-content/uploads/2020/08/the-deep-learning-revolution-and-its-implications-for-computer-architecture-and-chip-design.jpg

The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design

The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks.