Publications by profiles

Latest News – Editorial Line – Volunteers – Events – Specialties – Books– Contact – About


Research Profile

CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA (Counterfactual And Recourse LibrAry), a python library for benchmarking counterfactual explanation methods across both different data sets and different machine learning models. In summary, our work provides the following contributions: (i) an extensive benchmark of 11 popular counterfactual explanation methods, (ii) a benchmarking framework for research on future counterfactual explanation methods, and (iii) a standardized set of integrated evaluation measures and data sets for transparent and extensive comparisons of these methods. We have open-sourced CARLA and our experimental results on Github, making them available as competitive baselines. We welcome contributions from other research groups and practitioners.

A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning

This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

How to avoid machine learning pitfalls: a guide for academic researchers

This document gives a concise outline of some of the common mistakes that occur when using machine learning techniques, and what can be done to avoid them. It is intended primarily as a guide for research students, and focuses on issues that are of particular concern within academic research, such as the need to do rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results

YOLOX: Exceeding YOLO Series in 2021

We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with only 0.91M parameters and 1.08G FLOPs, we get 25.3% AP on COCO, surpassing NanoDet by 1.8% AP; for YOLOv3, one of the most widely used detectors in industry, we boost it to 47.3% AP on COCO, outperforming the current best practice by 3.0% AP; for YOLOX-L with roughly the same amount of parameters as YOLOv4-CSP, YOLOv5-L, we achieve 50.0% AP on COCO at a speed of 68.9 FPS on Tesla V100, exceeding YOLOv5-L by 1.8% AP.

YOLOP: You Only Look Once for Panoptic Driving Perception

A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network (YOLOP) to perform traffic object detection, drivable area segmentation and lane detection simultaneously. It is composed of one encoder for feature extraction and three decoders to handle the specific tasks. Our model performs extremely well on the challenging BDD100K dataset, achieving state-of-the-art on all three tasks in terms of accuracy and speed. Besides, we verify the effectiveness of our multi-task learning model for joint training via ablative studies. Deep Learning Paper Implementations

This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations, and the website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.

Partial Differential Equations is All You Need for Generating Neural Architectures — A Theory for Physical Artificial Intelligence Systems

In this work, we generalize the reaction-diffusion equation in statistical physics, Schrödinger equation in quantum mechanics, Helmholtz equation in paraxial optics into the neural partial differential equations (NPDE), which can be considered as the fundamental equations in the field of artificial intelligence research

Federated Quantum Machine Learning

We present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model.

Classification based on Topological Data Analysis

Topological Data Analysis (TDA) is an emergent field that aims to discover topological information hidden in a dataset. TDA tools have been commonly used to create filters and topological descriptors to improve Machine Learning (ML) methods. This paper proposes an algorithm that applies TDA directly to multi-class classification problems, even imbalanced datasets, without any further ML stage

Hugging Face datasets

One-line dataloaders for many public datasets & Efficient data pre-processing

S++: A Fast and Deployable Secure-Computation Framework for Privacy-Preserving Neural Network Training

We introduce S++, a simple, robust, and deployable framework for training a neural network (NN) using private data from multiple sources, using secret-shared secure function evaluation. In short, consider a virtual third party to whom every data-holder sends their inputs, and which computes the neural network: in our case, this virtual third party is actually a set of servers which individually learn nothing, even with a malicious (but non-colluding) adversary.

Multi-Image Steganography Using Deep Neural Networks

Steganography is the science of hiding a secret message within an ordinary public message. Over the years, steganography has been used to encode a lower resolution image into a higher resolution image by simple methods like LSB manipulation. We aim to utilize deep neural networks for the encoding and decoding of multiple secret images inside a single cover image of the same resolution.

El arte de la Inteligencia Artificial desde una perspectiva léxica

El principal objetivo de este documento es construir un glosario, a partir de las propuestas léxicas realizadas por los diferentes entes tecnológicos (ISO, IEEE, Wikipedia y Oxford University Press). Adicionalmente, el glosario estará estructurado según las ramas de conocimiento de esta área de trabajo, determinando exhaustiva y detalladamente las características de los términos que se incluirán en él para así facilitar una lectura amigable a la par que eficiente al usuario.

Explainability in Graph Neural Networks: A Taxonomic Survey

We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

Fourier Neural Operator for Parametric Partial Differential Equations

The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution.


Something went wrong. Please refresh the page and/or try again.

Share this on:
Exit mobile version