How to avoid machine learning pitfalls: a guide for academic researchers


🔘 Paper page: arxiv.org/abs/2108.02497?fbclid=IwAR3MNl5qa5ysUoNlkEQE4hSXNGoEGwtCClMNcJDXH1etKHNcCweDRTXW_tY

Abstract

«This document gives a concise outline of some of the common mistakes that occur when using machine learning techniques, and what can be done to avoid them. It is intended primarily as a guide for research students, and focuses on issues that are of particular concern within academic research, such as the need to do rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results».


Authors

Michael A. Lones


Click to rate this post
[Total: 1 Average: 5]
Exit mobile version