New Proposals

R0:fd224a04984225e4bdd2ae7a7e595529-Human Learn

Human Learn

Machine learning covers a lot of ground but it is also capable of making bad decision. We've also reached a stage of hype that folks forget that many classification problems can be handled by natural intelligence too. This package contains ...
R0:088528eaae518c6f09835c249f9a8635-The Word is Mightier than the Label: Learning without Pointillistic Labels using Data Programming -

The Word is Mightier than the Label: Learning without Pointillistic Labels using Data Programming

We analyze the math fundamentals behind DP and demonstrate the power of it by applying it on two real-world text classification tasks. Furthermore, we compare DP with pointillistic active and semi-supervised learning techniques traditionally applied in data-sparse settings. ...
R0:f70f5b9bc071317c0c1c9b1d7f122949-Highly accurate protein structure prediction with AlphaFold

Highly accurate protein structure prediction with AlphaFold

Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. ...
R0:30b2132518f44667599cd6f2a486e85c-Model-based Decision Making with Imagination for Autonomous Parking

Model-based Decision Making with Imagination for Autonomous Parking

Autonomous parking technology is a key concept within autonomous driving research. This paper will propose an imaginative autonomous parking algorithm to solve issues concerned with parking. ...
R0:e3d9ea294a21c145042e5f31369de739-CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA (Counterfactual And Recourse LibrAry), a python library for benchmarking counterfactual explanation methods across both different data sets and different machine learning models. In summary, our work provides the following contributions: (i) an extensive benchmark of 11 popular counterfactual explanation ...
R0:5e6fade87218b43e4b8d96158080cc85-A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning

A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning

This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as ...
R0:97532435b0393f0a6ae72973cc68382e-How to avoid machine learning pitfalls: a guide for academic researchers

How to avoid machine learning pitfalls: a guide for academic researchers

This document gives a concise outline of some of the common mistakes that occur when using machine learning techniques, and what can be done to avoid them. It is intended primarily as a guide for research students, and focuses on ...
R0:94ecd1a3b2168ef2dbb43222545d08bc-YOLOX: Exceeding YOLO Series in 2021

YOLOX: Exceeding YOLO Series in 2021

We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with ...

© 2019, 2020, 2021 | La Biblia de la IA – The Bible of AI™ | The license to use this website (except specific licensing) as Open Science is Creative Commons (CC BY-SA 4.0) | ISSN 2695-6411|

Share this on: